Romeo Kienzler

IBM Center for Open Source Data and AI Technologies


Romeo Kienzler is Chief Data Scientist at the IBM Center for Open Source Data and AI Technologies (CODAIT) in San Fransisco, owning the strategy lead for AI Model Training.
He holds an M. Sc. (ETH) in Computer Science with specialisation in Information Systems, Bioinformatics and Applied Statistics from the Swiss Federal Institute of Technology Zurich.
He works as Associate Professor for artificial intelligence at at the Swiss University of Applied Sciences Berne and his current research focus is on cloud-scale machine learning and deep learning using open source technologies including TensorFlow, Keras, DeepLearning4J, Apache SystemML and the Apache Spark stack.
He also contributes to various open source projects. He regularly speaks at international conferences including significant publications in the area of data mining, machine learning and Blockchain technologies.
Romeo is lead instructor of the Advance Data Science specialisation on Courera with courses on Scalable Data Science, Advanced Machine Learning, Signal Processing and Applied AI with DeepLearning.
Recently his latest book on Mastering Apache Spark V2.X ( has been translated into Chinese (
Romeo Kienzler is a member of the IBM Technical Expert Council and the IBM Academy of Technology - IBM’s leading brain trusts. #ibmaot

Twitter: @RomeoKienzler

What’s new in Apache Spark 2.4

Apache Spark is the de-facto standard for massive parallel data processing at Enterprise and Cloud Scale - after an introduction in how Apache Spark works let’s have a look on what’s new in Version 2.4 and how the new features are impacting the Big Data and AI ecosystem from an architectural point of view.